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Fig. 1: The interface of Differentiable Design Galleries enables users to intuitively explore the design space of transfer functions. (a)
The Query View accepts an exemplar as a query to find similar designs within the design space. (b) The Outline View provides an
overview of the design space. (c) The History View keeps a record of user exploration. (d) The Navigation View allows users to navigate
through the subspace constructed from selected designs. (e) The Modification View specifies a semantic direction for modifying a
target design. (f) The Reconstruction View presents the reconstructed transfer function based on the target design.

Abstract—The transfer function is crucial for direct volume rendering (DVR) to create an informative visual representation of volumetric
data. However, manually adjusting the transfer function to achieve the desired DVR result can be time-consuming and unintuitive. In this
paper, we propose Differentiable Design Galleries, an image-based transfer function design approach to help users explore the design
space of transfer functions by taking advantage of the recent advances in deep learning and differentiable rendering. Specifically, we
leverage neural rendering to learn a latent design space, which is a continuous manifold representing various types of implicit transfer
functions. We further provide a set of interactive tools to support intuitive query, navigation, and modification to obtain the target design,
which is represented as a neural-rendered design exemplar. The explicit transfer function can be reconstructed from the target design
with a differentiable direct volume renderer. Experimental results on real volumetric data demonstrate the effectiveness of our method.

Index Terms—Transfer function, direct volume rendering, deep learning, generative models, differentiable rendering
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Direct volume rendering (DVR) is a powerful and effective visualiza-
tion technique for exploring and studying volumetric data, which is
widely used by scientists, engineers, physicians, and artists in various
applications [7]. The expressiveness and flexibility of DVR stem from
the large design space of the transfer function (TF). Specifically, a
carefully adjusted transfer function helps to create a meaningful and
informative visual representation of complex data by mapping scalar
values to visual properties, such as color and opacity [27].

However, finding an appropriate transfer function is a non-trivial
task [34]. One of the most commonly used tools is transfer function
design widgets, with which users can define and refine the shape of the
target transfer function. While such widgets are powerful and flexible
for experienced engineers or scientists, the design process is usually
time-consuming and unintuitive for inexperienced users: subtle changes



in the transfer function domain may lead to an unexpected change in
the image domain due to the nonlinearity and complexity of the volume
rendering process. To address this issue, some researchers propose De-
sign Galleries to provide users a convenient way to explore pre-defined
design spaces of transfer functions [10,31,35,36]. Users can directly
select a rendered image in the image gallery to obtain the desired trans-
fer function, rather than manually setting one. This approach is more
user-friendly and intuitive for non-expert users seeking their desired
transfer function. However, several problems limit the usability of De-
sign Galleries: First, when users already have a specific design style in
mind, there is no efficient method to query the target design within the
design space. Second, it is unclear how to efficiently navigate the high
dimensional transfer function design space [19]. Third, it is infeasible
for users to modify the rendered images they are interested in within
Design Galleries, unless they revert back to using the traditional transfer
function widgets. To address the aforementioned problems, we propose
Differentiable Design Galleries, a transfer function design approach
based on deep learning and differentiable rendering to assist users in
exploring the design space of transfer functions. By leveraging a latent
design space, users can engage in various types of transfer function
exploration, including querying, navigation, and modification, within
the image domain without resorting to explicit transfer functions.

The principal challenge in constructing a Differentiable Design
Gallery lies in mapping the discrete design exemplars of the design
space into a latent design space, which is a continuous manifold rep-
resenting various types of implicit transfer functions. We tailor a
framework comprising three key neural networks, namely an encoder,
a generator, and a discriminator, to perform the latent design space gen-
eration. The encoder can analyze a design exemplar, typically a DVR
image, and map it into a latent code in the latent design space. This
latent code serves as a representation of the implicit transfer function
linked to the underlying transfer function used to render the design
exemplar. To ensure that the latent design space is well-organized
for subsequent explorations, we tailor an “imitation task” to train our
networks. Once the latent design space is generated, users can use a set
of interactive tools to explore this design space and locate their desired
transfer function design, which is represented as a neural-rendered de-
sign exemplar (generated by the generator of our framework). Finally,
our approach can reconstruct the explicit transfer function based on the
target neural-rendered design exemplar with the aid of a differentiable
DVR renderer.

We summarize our contributions as follows:

« Differentiable Design Galleries, an approach which provides users
with an intuitive way to explore the transfer function design space
in the image domain.

¢ A tailored framework to train an encoder that can map the transfer
function design space represented by discrete exemplars into a
well-organized latent design space.

* A set of interactive tools that help to explore the latent design
space and obtain the expected DVR result.

2 RELATED WORK
2.1 Transfer Function Design

The transfer function is crucial for direct volume rendering to create
an informative visual representation of volumetric data. How to design
transfer functions and facilitate the transfer function design process has
been continuously discussed in the past three decades.

Generally, there are two main categories of transfer function design
methods: data-centric methods and image-centric methods [34]. For
data-centric methods, the most basic transfer function is to define the
mapping of scalar values to visual properties, which is the so-called
one-dimensional transfer function. This transfer function is simple
and efficient for some scenarios. However, it would be inadequate
when features of interest exhibit overlapped intensity or are affected
by noise [28]. Different types of multidimensional transfer functions
are proposed to better depict volume data. Kindlmann and Durkin [21]
presented a histogram volume, which captures the relationship between

the data value and its first and second directional derivatives along the
gradient direction, for semiautomatic transfer function generation with
user guidance. Then, Kniss et al. [24] extended their work by intro-
ducing a set of direct manipulation widgets and a novel dual-domain
operation that makes specifying transfer functions more intuitive and
convenient. Later, the community proposed a variety of attributes for
transfer function design. For example, curvatures [22] can be used to
better deliver surface information; approximated size [2] helps locate
features with a certain size; visibility [4] emphasizes features’ visibil-
ity from different viewports; ambient occlusion [3] reveals occlusion
relationships.

Although well-elaborated derivatives of original volumetric data
may increase transfer functions’ expressiveness, the difficulty of trans-
fer function adjustment and generation also rises [27], which is chal-
lenging for non-expert users. A general question shared by those
data-centric approaches is: How can we effectively constrain the de-
sign space of transfer functions based on our prior knowledge about
the data? Tzeng and Ma [40] proposed an iterative self-organizing
data analysis technique to find clusters in 2D histogram space. Subse-
quently, user interaction is simplified to modify these clusters. Other
strategies to cluster the feature space are also explored, such as kernel
density estimation [30], Gaussian mixture model [43], and valley cell-
based clustering [44]. Dimensionality reduction methods are utilized
to simplify high-dimensional transfer functions to lower-dimensional
space [5,12,26]. Semantic-based transfer functions [38] are proposed
to aggregate low-level transfer functions for a more intuitive transfer
function design process. Ip et al. [17] leveraged information theory to
hierarchically cut the 2D gradient intensity histogram into segments.

While the data-centric methods still leave a non-intuitive gap be-
tween the transfer function domain and the resulting image, the image-
based methods allow users to directly explore the design space from
the image side. He et al. [13] proposed a semi-automatic approach that
lets users make selections among rendering results. These selections
supervise a genetic algorithm to generate better transfer functions. Guo
et al. [11] demonstrated a WYSIWYG volume exploration framework
that allows users to modify transfer functions by directly editing the
rendering result using the provided tools. Wu and Qu [50] proposed
an interactive transfer function design approach by blending different
direct volume rendered images. Design Galleries [10,31,35,36] try to
generate a sufficient number of samples to span a transfer function de-
sign space, allowing users to explore and choose among the presented
possibilities. However, how to provide users with a finer degree of
control when they are not satisfied with the initially generated images
within Design Galleries remains an unsolved problem. How to effi-
ciently explore the high dimensional transfer function design space
represented by the Design Galleries is also under discussion.

By leveraging recent advances in deep learning and differentiable
rendering, our Differentiable Design Galleries approach enables users
to perform query, navigation, and modification within the image domain
to achieve their desired transfer function design.

2.2 Deep learning for Scientific Visualization Generation

Deep learning techniques bring crucial benefits to the SciVis research
community. In 2022, Wang and Han [42] conducted a thorough sur-
vey about the application of deep learning techniques for scientific
visualization. Here we review the works that utilize deep learning for
scientific visualization generation.

Berger et al. [1] made the first attempt to use a generative network
with an explicit texture transfer function as input to replace traditional
DVR renderers. Their generator can support transfer function sensitiv-
ity analysis and provide an overview of possible 1D opacity transfer
functions, which is helpful in guiding users’ volume exploration pro-
cesses. He et al. [14] used a generator to directly learn a mapping
from simulation and visualization parameters to the rendering results,
which supports efficient analysis of the underlying ensemble simula-
tions. Hong et al. [15] leveraged a DVR image as the implicit transfer
function input for a generator in their pipeline so that users could ex-
plore the given volumetric data without an explicit transfer function.
To improve the quality of the generated visualization, different forms



of auxiliary information are proposed and provided to the networks.
Weiss et al. [46] fed low-resolution normal and depth fields to the neural
network to obtain high-resolution isosurface maps. Weiss et al. [47] pro-
posed a neural rendering framework that consists of one sub-network to
generate a sparse adaptive sampling structure and another sub-network
to generate the high-resolution image based on the sampling result.
Some works propose to integrate the neural network with a differen-
tiable rendering pipeline. Weiss and Navab [45] tried to integrate the
neural network into different stages of the DVR process so that the
rendering process can be optimized from manually adjusted reference
images. Weiss and Westermann [48] presented a memory-efficient
differentiable DVR renderer and showed the potential of integrating the
renderer with different loss terms and neural networks.

Our work extends this line of research by leveraging neural rendering
and differentiable rendering to help users explore the design space of
transfer functions.

3 OVERVIEW

The overview of our approach is presented in Fig. 3, which consists of
three main stages. First, given specific volumetric data and a pre-defined
transfer function design space, we generate design exemplars using a
traditional DVR renderer, with randomly sampled transfer functions
within the design space. Then we train an encoder and a generator to
generate a latent design space based on those design exemplars. The
training task is specifically tailored such that the generated latent design
space is well organized (Sec. 4). Second, we propose a set of tools
to help users explore this latent design space and integrate them into
an interactive interface (see Fig. 1). With our interactive interface,
users can (1) Gain a rough overview of the design exemplars within the
design space, just like in traditional Design Galleries. (2) Use an image
to query a similar design within the latent design space. (3) Navigate
the latent design space with intuitive operations. (4) Make semantically
meaningful modifications on a target design without resorting to transfer
function widgets (Sec. 5). Third, when users are satisfied with a certain
design (represented as a neural-rendered design exemplar), we leverage
a differentiable DVR renderer to reconstruct the desired explicit transfer
functions in texture form (Sec. 6).

4 LATENT DESIGN SPACE GENERATION

In this section, we will elaborate on the framework for latent design
space generation. The key generation process involves finding a suitable
mapping function F that transforms discrete design exemplars into
latent codes. To enable effective utilization of the latent design space
in downstream applications, we aim for the mapping function F to
possess the following properties:

(1) Similar design exemplars should be mapped to latent codes that
are close together in the latent design space.

(2) The mapping should be invariant with respect to the viewport
of the design exemplars. For instance, if two design exemplars have
different viewports but share the same underlying transfer function,
they should be mapped to the same latent code.

We propose utilizing an encoder network to learn the mapping func-
tion F, leveraging the expressive capabilities of neural networks as
function approximators [16]. The training task for the encoder is
designed as an “imitation task”, resembling the inverse engineering
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Fig. 2: Comparison of the processing steps for the "imitation task" be-
tween our model and a human expert.
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Fig. 3: Overview of our approach. First, we generate the latent design
space based on sampled design exemplars. Second, we explore the
latent design space using a set of interactive tools. Third, we reconstruct
the explicit transfer function from a neural-rendered design exemplar.

process of a DVR expert. As shown in Fig. 2, given a DVR image of
volumetric data as a design exemplar, a DVR expert can analyze the
features shown in the design exemplar and guess the underlying transfer
function. If the guess is good enough, the image rendered by a DVR
renderer with this guessed transfer function should closely resemble
the design exemplar. Similarly, the encoder tries to analyze the features
shown in the design exemplar and map it into a corresponding latent
code. If the mapping is successful, the image rendered by a generator
with this latent code should be similar to the design exemplar.

4.1 Overview of the framework

Fig. 4 illustrates the overview of our framework. During training, there
are three sub-networks: the encoder, the generator, and the discrimina-
tor. The input of the encoder is a design exemplar. The design exemplar
is rendered by a DVR Renderer with viewpoint Ve, and transfer func-
tion T,y,,. The encoder analyzes the design exemplar and maps it into a
latent code. The input of the generator is this latent code and a viewport
image. The viewport image is rendered by a DVR renderer with view-
point Ve, and an auxiliary transfer function 7, to provide viewport
information to the generator. The generator is expected to generate an
image that resembles the result of rendering by a DVR renderer with
viewpoint V,;e,, and transfer function 7,,. To facilitate the training of
the encoder and the generator, we use both pixel-wise comparison and
a discriminator to compute the loss between the neural-rendered image
and the ground truth image. The discriminator is trained to classify
whether a given image is from a generator or a DVR renderer. The
classification result can be used as the adversarial loss [9]. Previous
works [1, 14, 15, 18] have shown that this adversarial loss can alleviate
the over-smooth problem caused by pixel-wise loss and improve the
perceptual quality of the rendered images. Once the training is com-
plete, we no longer need the discriminator. We can use the encoder and
the generator separately or jointly for different downstream tasks.

4.2 Encoder

The architecture of the encoder is shown in Fig. 5 (a), which takes a
design exemplar as input and outputs a 64-dimensional vector, which is



-

Ground Truth

S

Design Exemplar

> 3
Latent Code
Encoder

=T

Viewport Image

Discriminator

Pixel-wise
Comparison

-

Neural-rendered Image

Generator

Fig. 4: The framework for latent design space generation. The encoder
maps the design exemplar into a latent code. The latent code and
the viewport image are fed into the generator. The generator then
produces an image where the viewport matches the viewport image and
the TF matches the design exemplar. During training, the encoder and
the generator are trained together based on losses computed by the
discriminator and pixel-wise comparison.

the latent code. Although a larger dimension could contain more infor-
mation, overestimating it too much could lead to unnecessary weights
and overfitting [1]. Based on our pilot experiment, we did not observe
significant performance improvement on the “imitation task™ as the
dimension exceeds 64. Additionally, we found that the latent dimension
is not a highly sensitive hyperparameter across the datasets we tested.
The design exemplar is on a white or black background without the
alpha channel. The encoder consists of a series of down-sampling
blocks. Each down-sampling block has a convolution layer and a leaky
ReLU activation layer (except for the last one). The convolution layers
use small filters to extract local features from the previous layers, which
are commonly used for feature extraction and representation learning
tasks. The height and width of the feature maps will reduce by half
after each convolution layer. The leaky ReL.U layers introduce nonlin-
earity into the model. We choose the leaky ReLU activation function to
mitigate the “dying ReLU” problem, which can occur when neurons
in the network are stuck at zero activation and stop learning. Except
for the first and last down-sampling blocks, we add an extra instance
normalization layer [41] between the convolution layer and the leaky
ReLU layer to stabilize training. We use instance normalization layer
instead of batch normalization layer due to its ability to preserve the
variations in style and content features within a single design exemplar.

4.3 Generator

The architecture of the generator is shown in Fig. 5 (b), which accepts a
latent code and a viewport image as input and outputs a neural-rendered
image. Different from the design exemplar, which only has RGB chan-
nels, the viewport image and the neural-rendered image have RGBA
channels. We made this design choice to allow users the freedom to
decide whether to display the neural-rendered image with a white back-
ground or a black background during latent design space exploration.
We use a viewport image instead of raw viewport parameters to repre-
sent viewport information because previous works [1, 15] indicate that
image input can provide the neural renderer with richer spatial informa-
tion and increase the stability of training. The overall architecture of
the generator is a U-net [37], consisting of a series of down-sampling
blocks followed by a series of up-sampling blocks. Skip connections
are added between each down- and up-sampling block of the same
spatial shape. This helps to enforce spatial consistency in the neural-
rendered image. The interior structure of the down-sampling blocks
is similar to that of the down-sampling blocks of the encoder. In the
up-sampling blocks, we use the inverse convolution layer instead of
the convolution layer. Within every up-sampling block, a dropout layer
is added after the instance normalization layer to avoid over-fitting, as
suggested by [18].

4.4 Discriminator

The architecture of the discriminator is shown in Fig. 5 (c), which
takes either the ground truth image Iy or the neural-rendered image
Ireq as the input and outputs the possibility that this image is a ground
truth image. The discriminator consists of a series of down-sampling

blocks, which are also used in the encoder and the generator. In the last
down-sampling block, we use the sigmoid activation layer instead of
the leaky ReLU activation layer. This ensures the predicted probability
to fall within the range of 0-1, where 1 represents that the discriminator
regards the input as a ground truth image. Note that the output of the
last sampling block still has a width of 32 and a height of 32 instead of
a single scalar probability. This is because the discriminator is indeed
32x32 small discriminators, each with a receptive field of 32x32 in
the input image. Previous work [18] has demonstrated that utilizing
multiple small discriminators with small receptive fields, as opposed to
a single large discriminator with a global receptive field, can enhance
performance while maintaining the same number of parameters. We
compute the final prediction of the discriminator by taking the average
of the predicted probabilities from those small discriminators.

4.5 Losses

The loss L for the encoder and the generator is computed by combining
the adversarial loss provided by the discriminator with the L1 (pixel-
wise comparison) loss as follows:
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where b is the batch size, D(/ Lr o) is the prediction result of the discrim-

inator D, A4; is the weight of the L1 loss. Previous literature indicates
that A, is relatively insensitive to set [1]. In practice, we find A; = 1000
stabilizes training without blurring the neural-rendered images.

The discriminator is also optimized by computing Lp during training,
which is defined as follows:

[ b=l A A
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4.6 Training

This section describes how we prepare the training data and perform
training.

Training Data: The set of design exemplars used as the training data
implicitly define the target design space of transfer functions. Inspired
by the transfer function sampling strategy by Berger et al. [1], we tailor
a sampling strategy for design exemplar generation. The domain of the
transfer function is first divided into several feature regions of interest.
By doing this, uninteresting feature regions (e.g., regions of air or
noise) can be removed from the target design space. Next, we assign
a Gaussian transfer function (GTF) primitive to each feature region,
which we refer to as the base GTF. For each round of sampling, we
randomly choose several feature regions of interest, apply random shift
to all of the parameters (color, opacity, mean, std) of the base GTFs in
those regions, and combine them together to generate a final transfer
function design. The parameters of the base GTF and the range for
arandom shift can be manually set to control the target design space.
For example, we can bias the color (represented in HSL color space,
independently sampled for each dimension) of features toward higher
lightness and saturation. Once the transfer function Ty, for the design
exemplar is generated, we render it with a random viewport V. The
viewport image is rendered with another random viewport V., and
the auxiliary transfer function 7,.,,. The auxiliary transfer function
is created by combining the assigned representative GTF for each
feature region of interest. To create an informative viewport image, it is
essential to adjust the std of each representative GTF such that the entire
feature region is visible. Simultaneously, maintaining a low opacity
for each representative GTF helps prevent issues with light/opacity
saturation, thus preserving clarity in the image. The ground truth
image is rendered with viewport V,;,,, and transfer function T¢y,. This
sampling strategy can be easily extended to multi-dimensional transfer
functions using the multi-dimensional GTF proposed by Kaniss et al.
[25]. In our experiment, we use the 2D transfer function to generate
design space for tooth data since its features can be better separated
with the 2D gradient intensity histogram.
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Fig. 5: Detail of the architecture of the encoder, the generator, and the discriminator. Blocks labeled with in=n, out=m are down-sampling blocks or
up-sampling blocks with » input and m output channels. Other blocks are labeled with their operations.

Training Process: During training, the encoder, the generator, and
the discriminator are optimized together. At the beginning, we initialize
the weight of all networks using Xavier initialization [8]. For each
iteration, we sample a batch of image triplets {lexp, lview,lcr}. The
encoder first takes the design exemplar Iy, as input and maps it into a
latent code. The latent code and the viewport image are subsequently
fed into the generator to obtain the predicted image Iy, The weights
of the discriminator are first updated according to the loss Lp defined in
Eq. (2). Next, the weights of the encoder and the generator are updated
according to the loss L defined in Eq. (1). We use Adam [23] as our
weight optimizer. To stabilize the training, a small learning rate « is
preferred. We find that & = 0.0002 stabilizes the training in our case.
We set the remaining hyperparameters of the optimizer to be consistent
with previous works [6, 18] on image-to-image generative tasks (8 =
0.5, B, =0.999).

5 LATENT DESIGN SPACE EXPLORATION

To demonstrate the benefits of generating a latent design space, we
propose a set of interactive tools to help users explore this latent design
space. With these tools, users can conduct exploration without going
through the process of using transfer function widgets.

5.1 Outline

To provide an overview of the design space, we perform Principal
Component Analysis (PCA) [33] on the latent code of 10,000 ran-
domly generated design exemplars to project them onto a 2D plane
(see Fig. 1 [¥). Similar to the original design gallery method [31], the
outline view arranges the design exemplars in a manner that allows
users to observe and analyze the patterns that exist across the entire
design space. For example, in Fig. 1 {3, design exemplars with similar
color/opacity of features are clustered together. The outline view also
serves as a springboard for exploration, allowing users to select some
design exemplars as their starting point. To prevent the thumbnails
of the design exemplars from occluding each other, we display them
hierarchically. The 2D plane supports zooming in and out. All the
design exemplars are represented as tiny gray dots initially to provide
a rough context for the global scope. We randomly sample a batch of
design exemplars (the number is set to 100 during the experiments)
to display their corresponding thumbnail images. If no thumbnails of
interest are found, they can be resampled from the broader set. When a
certain region of the projected plane is found to be interesting, users
can drag a box over this region and click the box to focus on it. New
thumbnails will be resampled among the gray dots in this local region.
Users can click on a thumbnail to view its details in Fig. 1 @@. When
users drag on the image in Fig. 1 @ to orbit around the volume, a

corresponding new viewport image will be rendered and subsequently
enhanced by the generator. All the design exemplars that have been
checked during exploration will be saved to the history view, allowing
users to restore them at any point (Fig. 1 @@).

(b1)

(b2)

(b3) (b4)

Fig. 6: The query operation. (a1, b1) are DVR images rendered by other
researchers [25,50]. Use (a1, b1) to query the latent design space can
obtain (a2, b2). If we do some simple hand draws like (a3, b3) and use
them to query the latent design space again, we can obtain (a4, b4).

5.2 Query

Although the outline view and hierarchical display strategy enable users
to browse the designs they might want, sometimes users already have
a target design in mind. In such cases, users want to quickly locate
their target design in the design space or at least know if it contains any
similar design as a good starting point. To address this, we provide a
query tool. At any time during exploration, the user can click the Q, in
Fig. 1 B to upload a query image. The encoder can analyze this query
image and map it into a latent code in the latent design space. This
latent code will be projected onto the outline view. The generator will
take this latent code and render it as a new design exemplar.

Fig. 6 shows example images that can be used for the query operation.
The query image can be a DVR image created by our DVR renderer
(used for generating training set), or by any other DVR renderers. More-
over, we have found that the encoder can even understand hand-drawn
modifications made to DVR images. Fig. 6 provides two illustrative
examples: In (al), we show a DVR image of the tooth dataset generated
by Kniss et al. [25]. If this image is used as a query image, we obtain
a similar new design exemplar (a2) within the latent design space. If
we use an external drawing tool to cover the pulp with the background
color and upload this image (a3) as a new query image, we obtain a
design exemplar (a4) without pulp. In (b1l), we show a DVR image of
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Fig. 7: The navigation operation. Some design exemplars are selected from the outline view to explore the design subspace among them. Intuitive
navigation operations like panning, zooming, and scaling can be done to search for the target design in this design subspace.

the bonsai dataset generated by Wu and Qu [50]. If this image is used
as a query image, we obtain a similar new design exemplar (b2) within
the latent design space. If we roughly sketch some green leaves and
use this image (b3) as a new query image, we obtain a design exemplar
(b4) with the corresponding features displayed as green.

5.3 Navigation

It is essential to provide users with an effective tool for navigating the
high-dimensional design space behind the discrete design exemplars.
Although projecting those design exemplars onto a 2D plane and nav-
igating this 2D plane provides a rough overview of the design space,
a lot of information is distorted or lost during the projection process.
To address this, we provide users with a navigation view (see Fig. 1,
). Users can freely select two or three design exemplars of interest
from the outline view (Fig. 1 (@) or history view (Fig. 1 @) to explore
their design subspace in this navigation view. With two selected design
exemplars, we can generate a 1D subspace that passes through their
latent codes. With three selected design exemplars, we can generate a
2D subspace that passes through their latent codes. For example, if the
user chooses three design exemplars from the outline view as shown
in Fig. 7, a 4x4 array of neural-rendered images will be displayed
to present the plane defined by the latent codes of these three design
exemplars. The user can then click “€p”’to move towards another part of
the plane, click “45/=" to adjust the difference between neighboring
design exemplars in th1s plane, scroll the mouse to zoom in for detail
comparison or zoom out for an overview. Users can freely select any
design exemplar they like during navigation and add it to the history
view for later exploration.
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Fig. 8: The modification operation. The direction from the latent code of
Isource 10 the latent code of 1,44 can be defined as a customized modifier
of semantic direction “add blue skeleton”. This modifier can be applied
to other designs to add a blue skeleton to them.

5.4 Modification

Users may be interested in a design exemplar and want to modify it.
To address this, we designed the modification tool. The modification
tool is designed based on the finding that many semantically meaning-
ful directions can be discovered within the latent space of generative
networks [39]. The user can choose one design exemplar 5yyce as the
source and another design exemplar I;4¢ as the target. The direction
from the latent code of Iyource 10 larger can be defined as a customized
modifier, denoted by 7y;,. This Ty, can be used to modify another
design exemplar with latent code 7}, as follows:

Thew = Traw + A'Z * Tdir (3

where 15 is used to control the degree of modification.

Fig. 8 demonstrates an example of modification. The user first
chooses a design exemplar without skeleton as Iurce and another
design exemplar with blue skeleton as Ir4e; to define a customized
modifier. This modifier follows the semantic direction “add blue skele-
ton”. If the user applies this modifier to another design exemplar, the
skeleton of that design exemplar will become bluer and more visible.
In practice, we find that the query and navigation tools can help users
create customized modifiers with the semantics they want. For example,
users can use the query result in Fig. 6 (a2) as Iyce, and the result in
Fig. 6 (a4) as I;qrger to create a modifier of semantic direction “remove
pulp”. Users can also discover a helpful semantic direction during the
exploration with the navigation view and save it as a modifier.

6 EXPLICIT TRANSFER FUNCTION RECONSTRUCTION

When users obtain the target design represented as a neural-rendered
design exemplar during latent design space exploration, they can recon-
struct it back to an explicit transfer function by clicking the aA button in
Fig. 1 @@. The transfer function under reconstruction and its rendering
result will be displayed in real-time in Fig. 1 @. The reconstruction
process is an optimization process with a differentiable DVR renderer.

Differentiable rendering is a technique that allows the optimiza-
tion of scene parameters (e.g., geometry, materials) from reference
images [20]. We adapt the approach proposed by Weiss and Wester-
mann [48] to perform differentiable DVR rendering. In our scenario,
the transfer function 7 is the scene parameter to be optimized, while
the neural-rendered image 1,4 serves as the reference image. The
optimization objective is to minimize the pixel-wise difference between
the rendering output and the reference image. The optimization process
for each iteration can be divided into two main stages: the forward pass



Dataset Resolution Precision Size(MB) Training Samples Image SSIM Image PSNR Color EMD
Bonsai 256%256%256 byte 16.0 64,000 0.982 33.1 0.00518
@) Engine 256x256x110 byte 6.87 64,000 0.976 325 0.00498
CT-Chest 384x384x240 byte 337 64,000 0.990 36.7 0.00308
Torso Phantom 256x256x256 byte 16.0 128,000 0.983 30.1 0.00472
Tooth 256x256x256 byte 10.0 128,000 0.988 34.8 0.00297
Bonsai Engine CT-Chest Torso Phantom Tooth
lexp Ipred Iér lexp Ipred Icr lexp Ipred Icr lexp Ipred Iér lexp Ipred Iér

(b)

Fig. 9: In (a), we provide quantitative results of the “imitation task” across different volumetric data. In (b), we show qualitative results. ., denotes
the design exemplar, I, denotes the neural-rendered result, Iy denotes the ground truth. The last two rows show typical artifacts (e.g., incorrect

color mapping, wrong details) for each dataset.

renders an image with the current transfer function 7 like a traditional
ray-casting-based DVR renderer, and computes the absolute difference
between the rendered image and the reference image as the loss func-
tion; the backward pass computes the gradient of the transfer function
T with respect to the loss function using back propagation, and then
updates T using gradient descent.

The reconstructed transfer function could contain high-frequency
variations that are less important for humans. Therefore, a smoothing
prior term is added to the loss term to encourage the reconstructed
transfer function to be smooth. In practice, we set the weight of the
smoothing prior term to be 0.4, following Weiss and Westerman [48].

When the optimization process converges, the transfer function T
can be used to obtain a DVR rendering result that is similar to the given
neural-rendered image. Since the reconstructed transfer function is
texture-based, it can be exported and used in other DVR renderers.

7 RESULTS
7.1 Implementation Details

Our experiments used the following volume datasets: the Bonsai !, the
Engine, the CT Chest I the Torso Phantom, and the Tooth. The DVR
renderer was adapted from the CUDA implementation of Weiss [48],
which is based on the basic emission-absorption model [32]. This DVR
renderer can switch between two modes: (1) in non-differentiated mode,
the renderer just performs like a traditional DVR renderer. (2) in dif-
ferentiated mode, the renderer becomes a differentiable DVR renderer.
Since the tooth dataset is better classified with 2D transfer functions,
we extended Weiss’s renderer such that it can support 2-dimensional
transfer functions in both non-differentiated mode and differentiated
mode. We used this extended renderer in non-differentiated mode to
generate all the images for the neural network training. We used this
extended renderer in differentiated mode as the differentiable DVR
renderer for transfer function reconstruction. The encoder and the
generator were implemented in PyTorch and trained on a symmetric
multiprocessing node with 8 NVIDIA 3090 GPUs. The training time
ranged from 10 to 30 hours, depending on the complexity of the dataset
and the transfer function design space. After training, the encoder

Uhttps://klacansky.com/open-scivis-datasets

took an average of 2.19 ms for inference, while the generator took an
average of 4.56 ms for inference. All the images generated during our
experiments were of 512512 resolution. The interactive applications
were implemented based on a web server/client framework. The inter-
face was implemented with D3.js on the client side. All the rendering,
network inference, and algorithm execution are done on the server side.

7.2 Evaluation for Latent Design Space Generation

As described in Sec. 4, we use an “imitation task™ as the auxiliary
task to train the encoder and the generator for latent design space
generation. For each volume dataset, we evaluated the performance of
this “imitation task” on a separate set of 1,000 volume-rendered images,
which are not seen during the training phase. We used peak signal-
to-noise ratio (PSNR), structural similarity index measure (SSIM),
and color histogram’s earth mover’s distance (Color EMD) as our
evaluation metrics. These three indicators complement each other:
PSNR calculates the average mean squared error between the pixels
of two images. SSIM takes into account the structural information of
images, such as edges, textures, and contrast. Color EMD measures the
similarity of color distribution between two images.

In Fig. 9 (a), we report the evaluation results of average PSNR,
SSIM, and EMD across all datasets. Those metrics indicate that overall
our encoder can successfully analyze the given design exemplar and
find a latent code that generates an image resembling the ground truth.
The qualitative experimental results in Fig. 9 (b) also confirm this.

To investigate how the color space, the viewport image, and the view-
port of the design exemplar impact the generation result, we conducted
comparative experiments for each of these factors.

As shown in Fig. 10 (a), we compared two restricted color spaces
for the CT-Chest dataset. Color space B (H = 0-360, S = 0.8-1.0, L
= 0.4-0.6) is larger than color space A (H =0-90, S =0.8-1.0, L =
0.4-0.6). Given the same training set size, sampling within color space
A can always reach better generation quality. This result indicates that
we can use fewer training samples and iterations to reach satisfactory
generation quality by limiting the color space.

In Fig. 10 (b), we compared the generation results among different
viewport images for the CT-Chest dataset. As we discussed in Sec. 4.6,
to preserve details, the opacity of the transfer function 7., should
be low enough to avoid opacity/light saturation. 7., is a transfer
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Fig. 10: Experiments on different factors that impact the generation
result. In (a), we compare two color spaces for the CT-Chest dataset.
Given the same training set size, sampling within a smaller color space
can achieve a better generation result. In (b), we compare different
viewport images for the CT-Chest dataset. A non-saturated viewport
image preserves more details and leads to better generation result. In
(c), we compare different viewports of the design exemplar for the bonsai
dataset. Viewports from which most features are clearly presented lead
to better generation results.

function that creates a viewport image without saturated pixels. T2
is a transfer function that leads to some saturated pixels in the viewport
image. T,;.,3 is a transfer function that leads to a lot of saturated pixels
in the viewport image. The only difference between Tpy1, Tiew2, and
T,iew3 1s the maximum opacity for each GTF. The result shows that
Tiew1 can reach a better generation result than 7,0 and 7Tyey,3.

In Fig. 10 (c), we conducted an experiment to show how the fidelity

of the generated result changes for different viewports on a sphere.

The spatial pattern illustrates that the networks tend to favor viewports
where most features are clearly presented, which resembles human
preference. In practice, we could forego sampling for viewports not of
interest to help the network concentrate on the rest of the viewports,
which ultimately depends on the user’s needs.

7.3 Experiments for Latent Designh Space Exploration

We demonstrate how users can explore the latent design space with the
interactive tools through an example case study with the Torso Phantom
dataset. We recommend readers watch our associated video to see more
exploration results across different datasets.

Fig. 11 illustrates how to find a target transfer function design in
the latent design space in a few steps. The user first chooses a design
exemplar a in the outline view as a starting point. However, this design
exemplar contains some features not of interest that the user wants to
subjugate, so the user manually creates simple hand drawings to cover
those features with the background color (see b ). b is then uploaded
as a query image to obtain a design exemplar without those features
(see c ). However, the user is still not satisfied with the color scheme
of the current visible features. Therefore, the user once again uses the
digital drawing pen to recolor some features (see d ) and upload it to
query a design exemplar with similar colors (see e ). Nevertheless, the
user finds that e still contains some features not of interest. To deal
with this, the user defines the direction from the latent code of a to
the latent code of ¢ as a customized modifier of semantic direction

Fig. 11: Latent design space exploration with the Torso Phantom dataset.
Image-based exploration tools are utilized interchangeably to reach the
final transfer function design. No operation in TF domain is required.

“subjugate those uninteresting features”, and applies it to e to obtain

f . Taking similar operations, the user creates another two candidate
design exemplars (see g and h ). To make a final decision, the user
puts f, g and h into the navigation view to create a design subspace
(see i) among them. Subsequently, the user browses through this
design subspace using our interactive navigation operations to decide
the final design (see j ). Finally, the user clicks the aA button to
reconstruct the explicit transfer function from the user’s design. The
reconstructed transfer function and its rendering result is shown in k .
All the operations during exploration are image-based and easy to grasp.
The user is not required to do any operations in the TF domain.

Our interface provides a flexible framework under which users can
customize their own workflow to explore the transfer function design
space. We have found that some of our early users have discovered their
own creative ways of using our interface. For example, one could use
an external image editing tool to blend two DVR images and upload the
blended result as a query image to achieve DVR image blending, simi-
lar to Wu et al. [50]. Users might utilize our modification tool to create
interpolated results to achieve transfer function animations [29] [49].
Moreover, users can continuously discover and gather customized mod-
ifiers during the exploration process. However, when the user already
has a specific modification target for a specific transfer function, they
are more likely to find a desired tool from an interface that provides a
rich set of tools with explicit modification purposes (e.g., the WYSI-
WYG editor by Guo et al. [11]). Compared with those tools that allow
only one modification at a time and rely on initial transfer functions,
our interface excels in aiding users in efficiently navigating a vast de-
sign space to find the desired transfer function. In the future, we will
investigate how to effectively integrate more image-based modification
tools to further improve the usability of our interface.

7.4 Experiments for Transfer Functions Reconstruction

Weiss and Westermann [48] have demonstrated that the differentiable
DVR renderer is capable of effectively performing the task of transfer
function reconstruction. In their experiment, a traditional renderer is
first used to render a reference DVR image with a manually set transfer
function. Then, the differentiable DVR renderer is initialized with
a random transfer function and a viewport the same as the reference
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Fig. 12: TF reconstruction results across different datasets. From left to
right: initial transfer function and rendering result; reconstructed transfer
function and rendering result; the reference image; the pixel difference
(x5 for better perception).

image. The pixel-wise difference between the reference image and the
image rendered by the differentiable DVR renderer is used as the loss
function to optimize the transfer function of the differentiable DVR
renderer. Once convergence is achieved, the image rendered by the
differentiable DVR renderer should be similar to the reference image.

The procedure of our reconstruction experiment is similar to that
of Weiss and Westermann. The only distinction is that the reference
image is now generated by our generator. Fig. 12 demonstrates the
reconstruction results across different datasets. The reconstruction
results closely match the references. An interesting observation is that
the generator and the differentiable DVR renderer can complement each
other: The rendering result of the generator provides a rough design
direction of the transfer function but may introduce unreliable artifacts
in details; The differentiable DVR renderer can optimize its transfer
function toward the rough design direction provided by the neural-
rendered result, while eliminating the artifacts due to its physically-
based rendering process.

8 LIMITATION, DISCUSSION, AND FUTURE WORK

In this paper, we present a promising research direction of combining
generative networks for design space exploration and differentiable
DVR renderers for faithful visualization generation. We identify several
potential avenues for future research to enhance our approach.
Generation fidelity: One limitation of our approach is that the
fidelity of the generated images could decrease as the complexity of the

Ier

Fig. 13: The generated result on real-world combustion simulation
data. When generating design exemplars for volumes with many high-
frequency features, the details tend to be blurred and distorted.

volume increases. For example, when generating design exemplars with
many high-frequency features, the details tend to be blurred/distorted
(see Fig. 13 as an example). When there are many features clustering
together within a certain area of the volume, they may occlude each
other, which makes it harder for the neural network to identify them.
As aresult, the generated image might assign those features the wrong
colors (see Fig. 9 (b), the lower part of the anatomic structures in the
Torso Phantom dataset), and the accuracy of the “query” operation
will also decrease. Although the current architecture setting works for
most volume data we tested, it might need to be changed for more
complex real-world datasets. In the future, we will experiment with
more architectures for the encoder and the generator.

Training data: The generation of training data could also be a
research topic on its own. Generating a representative dataset for all
possible transfer functions (TFs) is challenging and expensive due
to the vastness of the TF space. Currently, we try to use Gaussian
primitives to generate representative TFs, following the approach of
Berger et al. [1]. Although Gaussian primitives can be used to achieve
transfer functions of various shapes, they still contain bias. For example,
the user may want to use an alternative primitive with a sharp ramp
to show individual parts of the data opaquely, whereas the Gaussian
primitives tend to exhibit a bias towards smoother ramps. To support
customizing TF primitives and bias toward certain colors and opacities,
more interactive tools can be developed to help efficiently inject user
preference into the dataset generation process.

Training time: At present, the training time ranges from 10 to 30
hours, depending on the complexity of the dataset and the transfer func-
tion design space. We believe that there is potential to further reduce
the training time via transfer learning. The same type of volumetric
data usually shares similar feature shapes and scalar value distributions.
Therefore, we can pre-train a backbone model, capturing common fea-
ture representations for a class of volumetric data. By fine-tuning this
model on new volumetric data instead of training a model from scratch,
we may further reduce the training time.

Latent space exploration: Further research can be conducted to
enhance latent space exploration by designing additional forms of latent
space and expanding the collection of interactive exploration tools. The
latent space generated by our current architecture should be just “a”
latent space among all the possible latent spaces. For instance, we
can benefit from learning another latent space where there are both
continuous and discrete dimensions [6]. Furthermore, we can design
different architectures to better match the “Platonic latent space” for
different classes of volume datasets and various exploration scenarios.
Moreover, we intend to incorporate more interactive tools to facilitate
the exploration process. For example, adding a “filtering” tool (based
on image processing or latent code classification) that allows users to
filter out some colors/features from the 2D embedding view could be
helpful.

9 CONCLUSION

In this paper, we present Differentiable Design Galleries, an image-
based transfer function design approach based on deep learning and
differentiable rendering. We tailor a neural rendering task to learn a
latent design space, which represents various types of implicit transfer
functions in a continuous manifold. Users can explore this latent design
space intuitively with the set of interactive tools we provide. Further-
more, our approach can help users reconstruct their target design back
to the explicit transfer function with the aid of a differentiable direct
volume renderer. The effectiveness of our approach is demonstrated
through experiments conducted on real volumetric data. We believe our
approach has the potential to be extended to more complex volumetric
data and more advanced exploration methods.
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