APPENDIX A
PROOF OF THE INFERENCE MARGIN

Proposition A.1. The expected margin between the true log-
likelihood ;. x)logp(X) and E,,_  (x)ELBO is

Ep.,.p(x)[l0g p(X)~ELBO] = Ey, ,, x) [Dxcr. (g4 (2| X) [[p(2] X))

proof: We just need to prove the following equation
log p(X) — ELBO = Dicr.(4¢(2|X)|[p(2]X))
and the proof is:

log p(X) = /q¢(z|X) log p(X)dz

B p(sz)

= [aatal)tox e .
_ p(X, z) 4o (2|X)
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= ELBO + Dx1(q¢(2/X)||p(2|X))

APPENDIX B
PROOF OF THE OPTIMAL TRANSPORT SCHEME
Proposition B.1. The shortest-path derived from the opti-
mal transport scheme between zy ~ N(pi,0%) and zy ~
N (a2, 03) with A € [0,1] is

A=A+ (1= A)pe

=M1+ (1-XNos
proof: Utilizing the conclusions in [1], the closed form

of optimal transport from one multi-normal distribution
N (z1; p1, ¥1) to another normal distribution N (zo; o, 3o)

is
_1 1 1 _1
2 T(2) = potT(z—p1); T =375 5,%7)5%, "
In our problem, the optimal transport scheme with A is
zy = (1= N)z1 + AT (21)
T = diag(o1/03)
Utilize Equation 1, we can get
zx ~ N (i1, diag(6?))
A=A+ (1= MNpe O
&:)\0'14*(17)\)0'2

M

APPENDIX C
THE GRAD-FAM

Given an instance X, its factors z = (21, .. ., 2 ) and a factor
subsetzy = (zy,,...,2y,), 2, € 2, the Grad-FAM is derived
in two steps (Figure 1). First, we fix the factors in z — zy
and compute the negative gradient of the feature maps
A? € R g = 1,...,C in the final convolutional layer.
Therefore, we obtain the coarse-grained activation map MZf
as:
Mfone = ReLU(Y. A7 o [Ctetesi0 P8 Po(Xzy)
0A4
=1 @)
_8DKL(Q¢(Zf\X)|Ip(Zf))])
0Ad

1

0 ifxz<O,
x else

Combined with M2/, we derive the fine-grained activation

map M;’ as

Mlerfle = Interpolation(Mase) © ReLU

(GE%(zﬂm log pg(X|zs) — DKL(Q¢(Zf|X)HP(Zf))) ®)
o0X

where the ‘Interpolation” function matches the size of MZf

to X.
Ay
; A0 inference generation
X— -/ o —— qg(Zf|X) — —— pe(X|zy)
P 4 : i

where ReLU(xz) = is the rectified function.
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Fig. 1. The construction of Grad-FAM.

APPENDIX D
IMPLEMENTATION DETAILS OF OT-VAE

OT-VAE is trained in two steps. First, we train the basic
VAE model until its ELBO threshold is reached. Second,
we utilize the optimal transport estimation to obtain a
tighter ELBO. Details of the training process are explained in
Algorithm 1. During the training, we use the convolutional
neural network (CNN) as the backbone model. We use SGD
and adopt the reg:arameterization trick in [2], [3]. Moreover,

we introduce wj(ffz to balance the ELBO loss and the optimal
transport estimation process. It is gradually increased from

0 to 1 with the exponential scheduler

wl) = exp(=5 % (1 — t/tmax)?). @)

Algorithm 1 The inference and training process of OT-VAE
in epoch t.

Input:

A batch of data X sampled from pey,,(X);

Optimal transport estimation weights: w J\Z)z ;

Model parameters: (=1 p(t=1);

Model optimizer: SGD
Output:
Factors gy (z|X) =N (z; u(X; o), 02(X; o= 1)));
Inferred data pe(X|z) =N (X; f(z;0¢1), o?);
Updated parameters: (), ¢(*)
96(2|X), po(X|z) = VAE(X; 001, ¢~ 1))
Lriso = By, (zx)[— log pe(X|2)] + Dk1.(q¢(2|X)[[p(2))
Ly, = OptimalTransportEstimation(X, g4 (z|X))
L= LELBO + wg\f}z * LMZ
81), () — SGD(8 1), (-1, 2L L)
return q4(z|X), pe(X|z), 0, p(*)
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APPENDIX E
MORE EXAMPLES OF THE FACTOR OPERATIONS

We provide more examples of the clustering operations and
the factor operations to demonstrate that these operations
can support effective pattern identification with the help of
visualization. We choose the experimental settings of the
OT-VAE model that reach the best ELBO to generate the
results.

Clustering. The optimal transport based clustering pro-
vides the cluster label as well as the centroid for each cluster.
Our OT-VAE model use the centroid as the barycenter of
the optimal transport scheme in the factor space. Figure 2
shows that the derived centroid is representative of its
corresponding cluster.

Factor Operations. We provide further examples of
the Linear interpolation & transformation operations. For
each dataset, we choose two groups of charts. Each group
contains four charts. Charts in the first group are relatively
similar to each other and presents the smooth transition,
while those in the second group is distinct and presents the
sharp transition (Figure 3).

APPENDIX F
GENERATION PERFORMANCE OF THE OT-VAE
MODEL

Figure 4 compares the generation performance of OT—VAE
with the VAE and Ladder-VAE model. It shows that OT-VAE
achieves better generation performance with significantly
small residual values compared with other baseline models

APPENDIX G
EXPERT INTERVIEW QUESTIONS

The following questions is asked at the end of each inter-
view.
Workflow:

1) Does the ChartNavigator framework achieve effec-
tive and efficient pattern identification and annota-
tion in visualization charts?

2) How can the OT-VAE model help in this process?

3) How can the ChartNavigator framework help with
your daily work?

Visualization:

4) Does the ChartNavigator interface well-present the
core information?

5) Do there exist confusing designs that need to be
improved?

6) Is it intuitive to use the factor operations to define a
pattern?

7) Is the pattern identification strategy useful in un-
derstanding the semantics of factors and identifying
patterns?

8) Are there any findings with the ChartNavigator
interface that can hardly be discovered with tools
that identify patterns from the raw data?
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Fig. 2. The clustering performance of OT-VAE on four benchmark datasets. Left: the data instances belong to one cluster. Right: the corresponding
cluster centroid.
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Fig. 3. The #-diagram of OT-VAE on four benchmark datasets with the interpolation and transformation algorithm. Left: the transform process for
smooth changes. Right: the transform process for sharp changes.
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Fig. 4. The generation performance of OT—VAE on three benchmark datasets compared with two baseline models: VAE and LadderVAE. Target:
the target instances X we want to reconstruct with the inferred factors q4(z|X). Generation: the generation results X with pg (X|z). Residual: the

point-wise error between X and X as |X — X]|.



