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ChartNavigator: An Interactive Pattern
Identification and Annotation Framework

for Charts
Tianye Zhang∗, Haozhe Feng∗, Wei Chen, Zexian Chen, Wenting Zheng, Xiaonan Luo, Wenqi Huang,

Anthony Tung

Abstract—Patterns in charts refer to interesting visual features or forms. Identifying patterns not only helps analysts understand the
‘shape’ of the data but also supports better and faster decision-making. Existing solutions for identifying patterns in charts require a
large number of labeled data instances, making it intractable without user supervision. In this paper, we propose ChartNavigator, an
interactive pattern identification and annotation framework for unlabeled visualization charts. ChartNavigator leverages a novel
chart-sensitive deep factor model to map patterns into a low-dimensional factor representation space, and facilitates rich analysis with
the derived representations. We design and implement a visual interface to support efficient identification and annotation of potential
patterns in charts. Evaluations with multiple datasets show that our approach outperforms the baseline models in identifying and
annotating patterns.

Index Terms—pattern identification, chart, variational autoencoder, user interaction, visual analysis.
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1 INTRODUCTION

CHARTS denote computer-generated visual forms used
to represent data by a combination of visual encodings

like shape, position, color, size, and layout [16]. A well-
designed chart facilitates efficient information communica-
tion by leveraging human perception and understanding,
especially when expected or unexpected patterns are to
be extracted from the raw data [16]. It has proven that
reading charts is much more efficient than using numbers
when the data is fuzzy, irregular or complicated [20], [21].
In many cases, charts are preferable forms of the under-
lying data [17]. Established visualization authoring soft-
ware or toolkits, such as Tableau,1 Microsoft PowerBI,2 and
D3.js [19], have greatly eased the creation of visualization
charts. This results in pervasive chart resources in news ar-
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ticles, business reports, research papers and etc.. The need to
identify and annotate patterns from charts has been dramat-
ically increasing in many fields like business intelligence,
e-learning, scientific reporting, and media communication.

Although people can readily identify patterns in charts,
it could still be a laborious process. To address this issue,
pioneered works have demonstrated the feasibility of ap-
plying supervised methods to analyze chart images [4], [5],
[15], [17]. For example, Ma et al. propose a deep learning
based model for learning the visual cognition of scatterplots
from labelled data [15]. Poco et al. adopt a convolution
neural network to automatically recover visual encodings
from charts [17]. Despite the success of these works, which
relies on a number of labeled data instances to learn chart
features, it is still difficult to perform pattern identification
for charts with little or no supervision.

In this paper, we focus on identifying patterns from
visual charts instead of the tabular data. Note that, a
chart is represented as an image, whose patterns can be
easily characterized by means of representation learning
approaches [41]. In particular, we propose a novel deep
factor model, which works unsupervisedly and learns the
features hidden in the data by disentangling it into ex-
planatory factors from which the data is built. The strong
interpretability of deep factor models provides an insightful
understanding into the potential patterns. In particular, we
address two challenges that have not been revealed by
previous works: (1) Given a specific dataset, people often
have no idea about the target, making it difficult to deter-
mine a specific definition of a pattern. Therefore, pattern
identification from charts demands the incorporation of
human knowledge and prefers interactive methods instead
of automatic ones. (2) Pattern identification raises haystack-
in-a-haystack queries [22]. A specific pattern may appear
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in a group of data instances (a haystack) instead of in an
individual case (a needle). Thus, it is needed to discover
interesting haystacks from the entire chart dataset (a bigger
haystack).

We propose a novel interactive pattern identification and
annotation framework for unlabeled visualization charts,
denoted as ChartNavigator. As shown in Figure 1, Chart-
Navigator consists of three major components: (1) A chart-
sensitive deep factor model that maps the high-dimensional
chart data into high quality low-dimensional representa-
tions from which the chart can be reconstructed (Figure 1
(a)). (2) A suite of visualization tools which supports in-
teractive exploration and analysis of patterns in the fac-
tor space (Figure 1 (b)). (3) An unsupervised or a semi-
supervised algorithm that helps annotate the entire dataset
with the identified patterns (Figure 1 (c)). ChartNavigator
supports statistical visualization charts, such as scatterplots,
line charts and bar charts etc., and more complicated charts,
such as heatmaps and graphs etc. Without loss of generality,
we demonstrate its effectiveness on three kinds of charts
(scatterplots, pixel maps and heatmaps). It can easily also
adapt to other charts. To the best of our knowledge, this
is the first attempt on interactive pattern identification and
annotation for charts and also on learning refined represen-
tations of patterns.

This paper presents the following contributions:
• We propose a novel chart-sensitive deep factor

model, Optimal Transport Variational AutoEncoder
(OT-VAE), to capture chart-sensitive factors and gen-
erate high quality representations.

• We design a visual interface that provides two key
components: (1) a series of OT based factor opera-
tions on the factor space that supports chart-sensitive
extraction and reorganization of features in charts. (2)
a Gradient-based Factor Activation Map (Grad-FAM)
that provides visual explanations for arbitrary factor
combinations.

• We propose unsupervised and semi-supervised
multi-label solutions for annotating the entire dataset
with the identified patterns.

We apply ChartNavigator to real-world scenarios such as
traffic analysis and power system control. The experimental
results demonstrate the effectiveness and efficiency of our
framework.

2 PRELIMINARIES

In this section, we introduce the basic concept on patterns
and factors.

2.1 Deep Factor Model
Factor model [41] assumes that data can be generated from
different explanatory factors, e.g., object position and hue in
an image dataset. Given a dataset D, a factor model learns
the mapping from the high-dimensional data space to a low-
dimensional representation space so that the data can be
reconstructed from the low-dimensional representation.

A deep learning based factor model, variational autoen-
coder (VAE) [23], has been widely applied because of its
excellent interpretability. As shown in Fig. 1 (a), it constructs

TABLE 1
Symbols and Definitions.

Symbol Interpretation
D A dataset
X ∈ D A data instance ∈ D
z The explanatory factors
EX∼p[f(X)] The expectation of f(X)
DKL(q‖p) Kullback-Leibler divergence between q and p
I Identity matrix
N (X;µ,σ2) Diagonal Gaussian distribution
pemp The empirical distribution D
pmixup The mixup distribution [35] D
β(a, b) The beta distribution
1condition The conditional function
φ The inference process parameters
θ The generation process parameters
ELBO The evidence lower bound

a probabilistic model that consists of an inference and a
generation process. The inference process learns the low-
dimensional factor representation z of the high-dimensional
data instance X by estimating the posterior distribution of
z. And the generation process reconstructs instances X from
the factors z by estimating the posterior distribution of X
given by z. The evidence lower bound (ELBO) is used as
the objective function, which consists of two parts: (1) the
expectation of generating X from the factors z and (2) the
difference between the distribution of derived factors and
true factors. The ELBO is computed as

LELBO = DKL(qφ(z|X)‖p(z))− Eqφ(z|X) log pθ(X|z), (1)

where qφ(z|X) and pθ(X|z) denotes the inerence and gen-
eration process respectively. Table 2.1 summarizes related
notations.

2.2 Factor-to-pattern

A pattern can be explained as a particular combination of
the explanatory factors z, where each zi ∈ z are carefully
sampled from the posterior distribution of z. We derive the
formal definition of a pattern as:

Definition 2.1. A pattern is represented by a triplet
(X′,µ′,σ′), which satisfies

qφ(z|X′) = N (z;µ′,σ′2); X′ = Ez∼N (µ′,σ′2)f(z,θ), (2)

where µ′ and σ′ are the parameters of the Gaussian distri-
bution z subject to, and X′ is an instance generated from z.

3 CHART-SENSITIVE DEEP FACTOR MODEL

We propose a chart-sensitive Optimal Transport VAE (OT-
VAE) model to learn the factor distribution of the input chart
images. Reasons for that are twofolds. First, it leverages an
optimal transport (OT) scheme so that meaningful factors in
charts can be captured. Second, we propose a set of factor
operations based on the OT-VAE model to support pattern
extraction and reorganization of charts (Section 4.3).
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Fig. 1. The pipeline of ChartNavigator. (a) An enhanced deep factor model used to learn the factor representation of charts. (b) A visual interface
used to visualize the learned representations, identify patterns and generate representations for patterns. (c) An annotation module.

3.1 Optimal Transport VAE
For conventional VAEs, there is a ‘hidden’ threshold of the
ELBO value and continuing to optimize the model after this
threshold barely improves the inference results. The reason
is that ELBO only provides an upper bound of the inference
margin between the distribution of inferred factors and the
true factors (Please refer to Appendix A for proof). When the
ELBO reaches the threshold [28], [42], the inference margin
can still be large.

As such, we apply an optimal transport scheme to
provide a better inference margin and more interpretable
factors by regularizing the distributions of the factors. The
estimation is achieved in two steps. First, we extend the
empirical distribution pemp to the mixup distribution pmixup
as [35], from which we sample a number of virtual instances
Xλ:

Xλ = (1− λ) ∗X0 + λ ∗X1, λ ∼ β(α, α) (3)

where X0,X1 are data instances randomly drawn from
the dataset D. Second, considering that this interpolation
process in the data space can be mapped to the factor space,
we apply the norm-2 based optimal transport scheme [36] to
create the posterior distribution p̃(z|Xλ) as an approxima-
tion of the true posterior p(z|X). According to the optimal
transport scheme, for factors z ∼ N (µ,σ2), the shortest-
path between z0 ∼ N (µ0,σ

2
0) and z1 ∼ N (µ1,σ

2
1) is:

µλ = (1− λ)µ0 + λµ1;σλ = (1− λ)σ0 + λσ1 (4)

where λ ∈ [0, 1]. For proof details please refer to Appendix
B.

As shown in Algorithm 1, the estimated inference mar-
gin is denoted as LMz . By adding LMz to the ELBO loss, we
revise the conventional loss function as

L = LELBO + wMz ∗ LMz ,

where wMz is the optimal transport estimation weight. Im-
plementation details of OT-VAE is explained in Appendix D.
Experiments in Section 5.2 demonstrates the effectiveness of
OT-VAE in learning higher quality representations for charts
than conventional VAEs.

4 CHARTNAVIGATOR

ChartNavigator functions in three steps (Figure 1). First,
the OT-VAE model derives low-dimensional factor repre-
sentations from the input chart images. A factor represen-
tation is denoted as a triplet (X,µ,σ), where X denotes
the input chart, and µ, σ are the Gaussian distribution

Algorithm 1 The optimal transport estimation process of
OT-VAE.
Input:

A batch of data X sampled from pemp(X);
Inferred factors qφ(z|X) = N (z;µ(X;φ),σ2(X;φ));
Hyperparameter α for mixup distribution pmixup(X)

Output:
Xλ sampled from pmixup(X);
Estimation LMz of the margin DKL(qφ(z|Xλ)‖p(z|Xλ))

1: X̂, µ̂, σ̂2 = RandomPermutation(X,µ,σ2)
2: Xλ = (1− λ) ∗X+ λ ∗ X̂, λ ∼ β(α, α)
3: (µλ,σ

2
λ) = OptimalTransport((µ,σ2), (µ̂, σ̂2), λ)

4: qφ(z|Xλ) = VAE(Xλ)
5: p̃(z|Xλ) = N (z;µλ,σ

2
λ)

6: LMz = DKL(qφ(z|Xλ)‖p̃(z|Xλ))
7: return Xλ, LMz

parameters of factors z. Second, the input charts and their
factor representations (triplets) are visualized to support
interactive identifications of patterns. Users can modify the
factors of interested charts based on the input triplets and
generate sketches of the desired patterns (represented by
(X′,µ′,σ′), where X′ is the sketch and (µ′,σ′) is its factor
representation). Third, we annotate the dataset with the
identified patterns by comparing pairwise triplets (X,µ,σ)
and (X′,µ′,σ′).

Figure 2 illustrates the interface. It achieves the afore-
mentioned step 2 and 3 through the following operations:
loading data, finding candidate, representing pattern and
annotating.

4.1 Data Selection

Given a chart dataset (which contains a set of chart images)
and the associated factor representations ((X,µ,σ)), charts
are embed into a two-dimensional space by using the t-
distributed Stochastic Neighbor Embedding (t-SNE) method
and clustered by using the k-Means method (Figure 2 (A)).

Embedding: Charts are embed based on their factor
distributions. For each chart, we sample the mean value of
its factors and construct a multi-dimensional vector, based
on which it is projected. To avoid visual occlusion, we
employ the blue noise sampling [6] to reduce the number of
displayed points and preserve the overall data distribution.

Distance Measure: In the k-Means clustering, the op-
timal transport distance (also known as the Wasserstein
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Fig. 2. The ChartNavigator interface. (A) The projection view that projects visualization charts to a two-dimensional space. (B) The chart view
shows the original charts in the dataset. (C) The operation view supports arithmetic operations of factor representations. (D) The representation
view shows semantic changes brought by the executed arithmetic operations. The shown example is the PG-S dataset.

distance) is used under the restriction of normal distribu-
tion, which is consistent with the OT-VAE model and yields
reasonable results. Given a pair of charts X0,X1 ∈ D, the
distance between them is defined as:

dist2OT (X0,X1) = ‖µ(X0;φ)− µ(X1;φ)‖22
+ ‖σ(X0;φ)− σ(X1;φ)‖22

(5)

where the normal distributionN (µ(X1;φ),σ
2(X1;φ)) and

N (µ(X2;φ),σ
2(X2;φ)) denote the factor distribution of

X0 and X1 respectively.

4.2 Candidate Identification

Once data is loaded, users are expected to find the chart
candidates that contain patterns. To address this problem,
we allow users to select clusters from the projection view
(Figure 2 (A)) by brushing an interested area or double-
clicking a horizontal bar (each of which represent a cluster)
at the bottom of the projection view. These selected clusters
are then displayed in the chart view (Figure 2 (B)). Charts
of the same cluster is bundled together. Due to the limit of
the space, we only display 10 charts for each cluster and
users can click the inverted-triangle button on the bottom
right corner to see more charts in each cluster. We display
the class centroid of each cluster on the most left of its
bundle. The charts in this cluster are displayed on the right
side according to their distances to the centroid. The class
centroid and the other charts are separated by a blue vertical

bar. The class centroid Xctd for cluster T = {Xi}mi=1 is
defined as the optimal transport based barycenter [36]:

Xctd = Ez∼N (µctd,σ2
ctd)

f(z;θ)

s.t. µctd =
1

m

m∑
i=1

µ(Xi;φ),σctd =
1

m

m∑
i=1

σ(Xi;φ),
(6)

where {N (zi;µ(Xi;φ),σ
2(Xi;φ))}mi=1 are the factor distri-

butions of the instances in T and f(z;θ) is the generation
function that generates Xctd from its corresponding factors.

In this way, it is easier for users to find the following
two types of candidates: 1) the predominant candidates that
are able to represent a considerable part of the data, for
example, the centroid of a cluster, 2) the rare candidates
that could be the outlier of the data, for example, a chart
that is completely different from the class centroid and other
nearby charts.

4.3 Pattern Representation

The selected candidates are then displayed in the represen-
tation view (Figure 2 (D)). We introduce a factor activation
map and three types of factor operations (Figure 2 (C)).
The goal is to generate a chart for each individual pattern
by disentangling multiple patterns in the same chart or
creating a desired pattern based on the existing patterns.
Particularly, the specific factor combination that constitutes
a pattern (represented by a chart) is considered as the factor
representation of this pattern.
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4.3.1 Factor Activation Map
We introduce a factor activation map that provides visual
explanations for factors. It highlights the areas activated by
different factors in each chart.

We generalize the supervised Grad-CAM [34] to our
unsupervised OT-VAE, and propose the Gradient-based
Factor Activation Map (Grad-FAM). Given an instance X
and its factors z = (z1, . . . , zk), the Grad-FAM M is derived
within two steps. First, following Grad-CAM, we produce
a coarse-grained activation map Mc. Second, we compute
the gradient of the instance in the final convolutional layer
and combine it with Mc to produce a fine-grained activation
map Mf . Figure 3 shows an example of the coarse-grained
and fine-grained activation map. Details of the Grad-FAM
is explained in Appendix C.

 Chart Coarse-grained  FAM Fine-grained  FAM

TR Dataset

PG-S Dataset

PG-L Dataset

SP Dataset

Heavy Traffic

High Voltage

Stable Voltage

Downward Trend

Fig. 3. The Grad-FAM examples on different datasets.

4.3.2 Factor Operations
We also introduce the following factor operations:

Factor Adjustment allows users to adjust the details
of a pattern, including its position, shape and shade etc.
(Figure 2 (C1)). Given a candidate X and its factor distri-
bution p(z|X) ∼ N (µ,σ2), the distribution of each zi ∈ z
is encoded by a horizontal heatmap axis whose color in-
dicates the probability of zi taking this value. A redder
color indicates a higher probability. Users are allowed to
flexibly adjust the sampling value of each factor, during
which a chart is generated and changed in real-time based
on the given values of factors. Particularly, users can hide
the factors of less interest by clicking the hidden button on
the right of each axis. The hidden factors will then be noted
by a triangular button and can be re-displayed at anytime.

Interpolation supports the transition between pairwise
patterns and can efficiently generate an intermediate pattern
(Figure 2 (C2)). It performs linear interpolation between
pairwise charts (Xi, Xj) in the optimal transport based
factor space (Appendix B). Algorithm 2 shows the details
of the linear interpolation process. The default interpolation

step size is set to 5. Users can also flexibly set the interpo-
lation scheme by adjusting the step size or setting the the
interpolation positions in the interface.

Algorithm 2 Linear interpolation with the OT-VAE.
Input:

Instances X0,X1 ∈ D;
Inferred factors N (zi;µ(Xi;φ),σ

2(Xi;φ)), i = 0, 1;
Interpolation parameter t ∈ [0, 1];
Generation function f(z;θ)

Output:
Interpolation result Xt

1: µt = (1− t) ∗ µ(X0;φ) + t ∗ µ(X1;φ)
2: σt = (1− t) ∗ σ(X0;φ) + t ∗ σ(X1;φ)
3: Xt = Ez∼N (µt,σ2

t )
f(z;θ)

4: return Xt

Addition/Subtraction allows users to combine pairwise
patterns or disentangle multiple patterns (Figure 2 (C3)). It
performs linear transformations on the factor space of the
selected charts {Xi}. Algorithm 3 shows the details of this
process.

Algorithm 3 Linear transformation with OT-VAE.
Input:

Instances Xi ∈ D, i = 1, . . . ,m;
Parameters wi ∈ R, i = 1, . . . ,m
Factors N (zi;µ(Xi;φ),σ

2(Xi;φ)), i = 1, . . . ,m;
Generation function f(z;θ) of OT-VAE

Output:
Linear transformation result XT

1: µT =
∑m
i=1 wi ∗ µ(Xi;φ)

2: σT =
√∑m

i=1 w
2
i ∗ σ2(Xi;φ)

3: XT = Ez∼N (µT ,σ2
T )f(z;θ)

4: return XT

4.3.3 Pattern Representation Generation
As shown in Figure 2 (D), each row in the representation
view contains a candidate selected from the chart view. The
candidates are listed at the leftmost side of each row. Users
can display the factor activation maps by switching to the
FAM mode on the top-right corner of the representation
view. In the FAM mode, users are allowed to select a specific
factor or a combination of factors, and the FAMs of the
selected factors are computed and displayed by superposing
an FAM on its corresponding chart. An FAM provides
visual explanations of the semantics of the factors, which
guides the process of using the factor operations to identify
patterns.

Then, users can switch back to the pattern representation
mode. Users can change the visualization of a candidate by
selecting it to perform factor operations. For each candidate,
the execution of any factor operations will generate a new
chart by the OT-VAE model. This chart is reconstructed
from the user-defined factor distribution. An arrow is shown
between the candidate and the newly generated chart. Un-
der the arrow, there is an icon indicating which kind of
operation is taken. Operating on the newly generated chart
will generate another new chart. Users can iteratively repeat
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this process until the expected pattern is exactly represented
by a generated chart. Particularly, users need to select a pair
of charts to perform the addition/subtraction/interpolation
operation and the another selected chart is superposed on
the top right side of the candidate chart.

To be mentioned, the factor operations are used to en-
large the dataset by generating new charts (each of which
represents a pattern), and the original charts of the dataset
(candidates used to generate new charts) remain unchanged
during the entire identification and annotation process.

Pattern Identification Strategy. Because there is a set
of factors along with their different combinations, we sug-
gest users to first apply the factor activation map (FAM).
By analyzing the activation map of each factor and their
combinations, users can gain a general understanding of
the semantics of each factor. Then, users can select inter-
ested factors and adjust the factors to learn the in-depth
correspondence between the factors and the basic elements
in charts. Users are suggested to start pattern identification
after they are familiar to the factors.

4.4 Annotation
Once the factor representation of an pattern (X′,µ′,σ′)
is confirmed, users can rightclick the corresponding chart
and record it. Descriptions of the pattern can be added.
The recorded patterns are displayed on the bottom of the
projection view. Whenever an pattern is recorded, the Chart-
Navigator interface will annotate the entire dataset with the
existing patterns. We propose the following two methods to
annotate the dataset.
The Semi-supervised Method For the semi-supervised way,
we identify patterns in the ChartNavigator interface but
do not necessarily generate new factor representations for
them. Instead, users can manually annotate part of the
charts in the dataset directly with the identified pattern
categories during the exploration process. The rest of the
dataset is then automatically annotated in a semi-supervised
way in which the OT-VAE model learns from the labeled
data and classifies on the unlabeled data.
The Unsupervised Method For the unsupervised way, we
annotate the dataset by computing the similarity between
each chart Xi and each pattern X

′

i. In our experiment,
we use the 2-Wasserstein distance to compute the distance
between the factor distributions of Xi and X

′

i.
Once the dataset is annotated, the color of each point

in the projection view will indicate the pattern categories
instead of the cluster categories.

5 EXPERIMENTS

We conduct the following experiments to demonstrate the
effectiveness of ChartNavigator. Each experiment verifies
one of the major components of ChartNavigator.

5.1 Data Description
We conduct experiments on datasets that contains three
different kinds of charts. Table 2 shows the basic information
of these datasets.

Trajectory dataset. The TR dataset is a real-world
dataset, which contains a set of heatmaps describing the

distribution of taxi trajectories in a Chinese city for one
month. The dataset is partitioned by hour and each heatmap
represents the taxi trajectories in a specific hour of this
month. The color of the heatmap represents the number
of passing taxis. A redder color indicates a larger number
of taxis. We invite two PhD students majoring in urban
trajectory analysis to manually label the TR dataset. Five
patterns are identified in the dataset, including 1) a heavy
traffic in downtown, 2) a sparse night traffic in the entire
city, 3) a heavy traffic near the mall, 4) a heavy traffic in the
commercial area and 5) a heavy traffic in the tourism area.
Each chart is labeled with one pattern.

Power grid datasets. We collect two simulation datasets
from two real-world power grids: a small-scale one (PG-S)
and a large-scale one (PG-L). Both datasets contains a set
of pixel maps, which describe the changes in bus voltage
when the power grid suffers different kind of electrical
failures. For each pixel map, the horizontal axis represents
the time and the vertical axis represents the buses, sorted
by their ID. The grayscale of pixel (i, j) encodes the voltage
of bus i at time j. A higher grayscale indicates a higher
voltage value. We invite four power-grid engineers from
the industry to manually label the PG-S dataset. Eight
patterns are identified, including 1) a shutdown of the entire
power gird, 2) a voltage valley for all buses immediately
after the failure takes place, 3) a voltage peak after the
failure, 4) an obvious voltage increase after the failure, 5)
a long-term low voltage for buses near the failure, 6) a
long-term low voltage for buses far from the failure, 7) a
continuous voltage fluctuation of the entire power grid and
8) a continuous voltage fluctuation of half buses. Each chart
in the dataset contains 2.5 patterns on average. Because it
is extremely time-consuming to label the PG-L dataset, we
conduct quantitative experiments on the PG-S dataset.

Scatterplot dataset. We collect the scatterplot dataset
(SP) from [15], which is carefully selected from a number
of real-world datasets. Each scatterplot is featured with one
pattern proposed by Wilkinson et al. [14]. Seven patterns are
considered in our paper, including 1) a monotonic upward
trend, 2) a monotonic downward trend, 3) stringy periodic
fluctuations, 4) a striated distribution 5) a convex distribu-
tion, 6) a skewed distribution and 7) a clumpy distribution.
Each chart is labeled with one of these patterns.

TABLE 2
Details of the four real-world datasets used to evaluate the

ChartNavigator framework.

Dataset #Charts Chart Size
(px) #patterns #patterns

(per Chart)

TR 744 512×352 5 1

PG-S 3,504 368×464 8 2.5

PG-L 25,925 650×800 - -

SP 831 128×128 7 1

5.2 Factor Representation
Firstly, we evaluate the performance of OT-VAE model
through the ELBO value and the quality of the generated
images on the above four benchmark datasets.
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TABLE 3
Comparison results of ELBO (≤ logp(X)) of our method and the baselines. The presented ELBO values are all negative and we do not display the

negative sign of each result for consideration of clear reading. The best results are marked in bold.

Backbone Model PG-S PG-L TR SP

MLP
VAE 314.87(±6.42) 345.16(±2.72) 1333.43(±42.42) 64.88(±, 8.15)
LadderVAE 430.62(±9.75) 83.58(±3.06) 2546.83(±130.11) 119.48(±8.08)
OT-VAE 288.15(±1.32) 77.79(±1.86) 1292.00(±58.87) 62.24(±7.79)

WideResNet-28-2 VAE 106.16(±5.25) 43.49(±1.40) 1169.59(±3.66) 58.04(±, 0.82)
OT-VAE 88.85(±3.01) 36.79(±1.74) 1152.2(±4.44) 55.11(±, 1.42)

PreActResNet18 VAE 101.57(±3.75) 41.90(±1.50) 1244.06(±12.72) 58.15(±, 1.99)
OT-VAE 82.97(±6.21) 38.08(±1.44) 1151.67(±8.40) 56.42(±, 2.82)

Densenet121 VAE 104.92(±9.48) 40.72(±2.58) 1198.08(±34.02) 58.46(±, 1.73)
OT-VAE 101.46(±5.87) 36.23(±0.81) 1203.13(±55.59) 57.29(±, 2.18)

Baselines. We use two advanced VAE models as
the baselines: the autoencoding variational bayes model
(VAE) [43] and the hierarchical VAE model (Ladder-
VAE) [42]. We consider four widely-used backbones in deep
learning models, the multi-layer perceptron (MLP) [44],
the wide residual networks (WideResNet) [45], the pre-
acitivated residual networks (PreActResNet) [46] and the
densely connected networks (DenseNet) [47]. To be fairness,
the parameters of all models are on the same order of
magnitude (about 10M).

Experimental settings. In training process, we use
Adam [48] as the optimizer and set learning rate as 1e − 5.
For the OT-VAE model, we increase the weight wMz

from 0
to 1 gradually with an exponential scheduler (Appendix D).
The experiments were carried out on GeForce RTX 2080Ti
GPUs and all models were fully trained to achieve the best
ELBO value.

Results. The ELBO on the test set are presented in Ta-
ble 3. We find that the OT-VAE outperforms all competitors
by at least 10% ELBO with all backbones. Moreover, with
the optimal transport estimation, VAE models can achieve
a tighter ELBO lower bound on almost the all cases except
one in the TR dataset, which demonstrate our assumption in
Section 3.1. We do not apply the LadderVAE model for the
other three backbones because LadderVAE is a hierarchical
model and these backbones do not possess a hierarchical
architecture. Despite this, OT-VAE achieves a better gener-
ation performance with significantly small residual values
compared with other baseline models (Please refer to Ap-
pendix F for the generation examples).

5.3 Pattern Identification
We now demonstrate the effectiveness of the factor opera-
tions and visual interface through several case studies and
an expert interview. (For more examples please refer to
Appendix E.)

5.3.1 Case Study
Case 1: Understand semantic changes

We first explain how Factor Adjustment can be used to
help understand the semantic changes brought by different
factors. As shown in Figure 4, the original chart selected
from the TR dataset illustrates the distribution of taxi trajec-
tories in a Chinese city. By decrease the fourth factor z4 from
0.8674 to -2.7354 and decrease the eleventh factor z11 from
1.9174 to -3.0726, the trajectories in the highlighted area will
disappear. As shown in the FAM mode, the highlighted area

is no longer activated when z4 and z11 decreases. According
to the map, the highlighted area is a tourism area. Therefore,
we draw the conclusion that these two factors correspond to
the trajectory changes of the tourism area in the TR dataset.

Z4 Z11

Factor 
AdjustmentTourism Area

Original Chart Result

FAM Mode FAM Mode

Fig. 4. Our factor operations can be used to understand the semantic
changes brought by different factors.

Case 2: Walk in the factor space
Interpolation provides a more efficient way to help users

understand the sophisticated factor space by walking in it.
Apart from generating smooth transitions between similar
charts, our interpolation operation can also find the break-
ing points for a pair of totally distinctive charts, which acts
as a powerful tool for discovering new patterns. As shown
in Figure 5, by applying interpolation between the source
and target chart (step number 5, step size 0.2), we discover a
breaking point in the middle of the interpolation results. By
adjusting five of the factors of the breaking point chart, we
derive a new chart X. As shown, chart X possesses opposite
features to the source chart and share similar features with
the target chart. In particular, the features presented by chart
X is brand new in the PG-S dataset.

Case 3: Crop uninterested features
Addition/Subtraction operations can filter out the uninter-

ested patterns in a given chart. As shown in Figure 6, the
selected chart (A) in the PG-S dataset contains two type of
patterns: 1) a sudden voltage drop at the very beginning
as highlighted in red, and 2) repeated voltage increase for
buses in two areas as highlighted in blue. To obtain the
factor representation of the former type of pattern, we add
another selected chart (B) to (A). Chart (B) have pattern (1)
in common with chart (A) but behaves totally opposite to
(A) after the sudden voltage drop. By adding chart (B) to
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Source (t = 0) Target (t = 1)

Interpolation Results

t = 0.2 t = 0.4 t = 0.6 t = 0.8

Z0 Z2

Z3 Z4

Z15

Breaking Point Chart Chart (X)

High Voltage

(Voltage 
Fluctuation)

(High Voltage 
for most buses)

Fig. 5. An example of utilizing the interpolation operation to find the
breaking point.

chart (A), we derive a synthetic chart (C) that only contains
pattern (1).

Addition

Chart (A) Chart (B)

Chart (C)
Voltage Drop

Repeated Voltage Increase

Fig. 6. An example of using addition operation to crop the uninterested
features.

Case 4: Pattern Identification
Now we show a comprehensive example of using the

ChartNavigator interface to identify a pattern. As shown in
Figure 7, we select the chart (A) as the source to design new
patterns. It contains two vertical stripes, which indicates
an extreme data distribution in an attribute. The target is
to define a pattern that keeps a similar distribution of the
right points in Chart (A), which indicates that the data
only takes a few large values for a certain attribute (the
x-axis attribute). To achieve this, a straightforward idea is
to subtract the left points from Chart (A). Therefore, we
select a chart (B) with most points distributed on the left and
perform subtraction between Chart (B) and Chart (A). The
result is a set of disordered and aggregated points (result 1
in Figure 7) instead of the expected pattern. Then we adjust
some factors to re-arrange these points and obtain result
2, which indicates a monotonic upward trend in the upper
left corner of the chart. To approach the target pattern, we
apply the FAM to result 2 and discover that the activation
area of (z0, z4, z5) matches the positions of the points. By

adjusting these factors, points will gradually tilt to the right
part (result 3 in Figure 7), which is the desired pattern.

The identified target pattern is not the same with points
in the right part of Chart (A) because Chart (B) used to
perform the subtraction operation contains a group of ad-
ditional points in the bottom region. To facilitate pattern
customization, we propose to support sketch-based interac-
tions, which will be discussed in Section 7.

Chart (A) Chart (B) Result 1

Z0

Z7

Z8

Z0

Z4

Z5

Result 2 Result 3

Vertical Stripes Downward Trend Disordered Upward Trend Upward Trend

Fig. 7. A comprehensive example of pattern identification.

5.3.2 Expert Interview
ChartNavigator was evaluated by three domain experts,
whose expertise was in power grid simulation (E1), traffic
management (E2) and visualization (E3) respectively. They
were not involved in the design and implementation of
ChartNavigator. Each interview was conducted in three
steps. 1) We introduced the background and the workflow
of our framework. 2) We explained the interface with the
dataset that the expert was familiar with (PG-S and PG-L
datasets for E1, the TR dataset for E2, and the SP dataset
for E3). During the interview, the expert could explore the
dataset freely in the interface and was recommended to
follow the pattern identification strategy (Section 4.3.3). 3)
We collected their comments on the workflow and the visu-
alization of ChartNavigator. Each interview lasted about 1
hour. Please refer to Appendix G for the interview questions.

WorkFlow: The workflow of ChartNavigator was ap-
preciated by all experts. They agreed that ChartNavigator
was effective in identifying and annotating patterns in
visualization charts. E3 was satisfied with the three-step
pipeline (representation, identification and annotation) and
commented that ”ChartNavigator can improve the efficiency of
pattern identification. The deep factor model provides the factor
representation of the charts, which can be understood and operated
in the interface. This helps me to quickly define a desired pattern in
the interface even if it is not included in the chart dataset.” E2 was
impressed by the OT-VAE model and commented that ”This
model gives me a new understanding of the patterns by manually
arranging, combining and changing charts.”. E1 mentioned that
ChartNavigator could contribute significantly to their daily
work. ”We need to analyze a large number of charts generated
from numerous simulation experiments every day, ChartNaviga-
tor can effectively reduce our burden.”

Visualization: The visual interface received overall posi-
tive feedback from experts. One problem was raised during
the interviews: experts found that the semantics of factors
were unclear and took time to understand. As such, they
were recommended to follow our strategy to explore in
the interface. By applying our strategy, they noted that it
become easier to understand the factors. As E1 mentioned
”The factor activation map explains the area (in the chart) affected
by each factor or combination of factors, and therefore helps to
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interpret the factors.” E2 appreciated the factor operations and
commented ”The projection view and the cluster view provide
an overview of the traffic conditions, which guides me to define
a desired traffic map by using the factor operations. I especially
prefer the addition, subtraction and interpolation operations,
which more intuitively correspond to the increase or decrease of
the traffic, while the factor adjustment operation takes some time
to achieve the desired effect.” E3 appreciated the functionalities
of the interface. He commented that ”The traditional way of
searching patterns in the raw data is not transparent, and your
interface offers an intuitive way for users to explore on their own.
I consider ChartNavigator more trustworthy and reliable.”

Limitations: Experts provided suggestions to improve
ChartNavigator. E1 pointed out that in each scenario, the
charts were of the same category. It could help if various
kinds of charts were included, e.g., analyzing the topolog-
ical graphs and the pixel maps of the power grid at the
same time. E3 suggested to represent each factor with a
corresponding heatmap to illustrate its activated area in the
chart.

5.4 Pattern Annotation

We evaluate the annotation accuracy of the ChartNavigator
framework on two labeled datasets: PG-S and TR.

Baselines. We compare OT-VAE with other unsuper-
vised data mining and deep factor models: Non-Parametric
Instance Discrimination [7] (NPID) which is the state-of-
the-art on ImageNet classification, and the aforementioned
VAE, LadderVAE. For fair comparison, We use the same
DenseNet-121 as the CNN backbone for NPID. Other ex-
perimental settings are the same with Section 5.2.

Evaluation Metric. We directly compare the annotation
accuracy for the TR dataset because it is a single-label
dataset. As for the PG-S dataset, we use the area under
the receiver operating characteristic curve (AUC) metric
to evaluate the annotation performance, which are widely
used in multi-label learning algorithms [8] .

Semi-supervised Results. For fair comparison, we build
KNN classifiers using the learned factor representations for
all models to annotate the dataset. We present the 5-fold
cross validation result of the OT-VAE model and present
the best results we obtain from the other three models.
The proportion of the labeled dataset varies from 1% to
10% of the entire dataset. Figure 8 shows that OT-VAE
outperforms the other models by a large margin on both
datasets. We also notice that when only 10% of the dataset is
labeled, OT-VAE can achieve a considerable mAUC which
is very close to the one in a 100%-labeled situation, while
the other models are sensitive to the annotation proportion.
This advantage can significantly reduce the annotation cost
of the ChartNavigator framework.

Unsupervised Results. To evaluate the unsupervised an-
notation performance, we first identify the factor represen-
tations of the labeled patterns by using the ChartNavigator
framework. Then we let all models learn the charts recon-
structed from the identified factor representations. Table 4
and Table 5 show the annotations results of the PG-S and
TR dataset, respectively. As shown in Table 4, our method
achieves the best AUC value on most pattern categories and
achieves the best mAUC. As for the TR dataset in Table 5,

our method outperforms the other models by a large margin
of 10%. We also notice that, OT-VAE achieves a comparable
mAUC to the 1%-labeled semi-supervised annotation case.
It indicates that with the support of ChartNavigator frame-
work, the identified factor representations of patterns are
effective to approach a ground-truth level.

6 RELATED WORK

6.1 Automatic Pattern Identification

Patterns, in the sense of knowledge discovery and data
mining, are interesting facts underly the data [9]. Among
all pattern identification works, time series mining and
frequent pattern mining are the most important and popular
ones. Time-series mining aims to identify peak/valleys [49],
motifs [50], trends [51] and concept drifts [52] etc. Frequent
pattern mining seeks to mining frequent itemsets [53], as-
sociation rules [54], sequential patterns [55] and structure
patterns [56] etc. Han et al. [57] provides a detailed survey
of existing frequent pattern mining methods. Particularly,
to enhance the efficiency of the pattern identification pro-
cess, existing works have proposed to store data in a data
cube and apply approximate query techniques to speed up
querying [9], [10].

However, these methods identify patterns directly in the
raw data. As such, identified patterns are not always easy
to read. To enhance the readability and interpretability of
the identified patterns, existing works have proposed a two-
step mining framework [58], [59]. Patterns are first identified
from the raw data. Then, based on the data that contains
patterns, a collection of visualizations are composed to help
analysts compare, sort and reason the results. For example,
Zenvisage [59] introduces a novel visual exploration lan-
guage, ZQL, to support pattern querying and generate pre-
defined visualizations. SeedDB [58] explores the entire data
space to search for interesting patterns, and automatically
generate visualizations based on the search results.

Different from the aforementioned works, there are
works that skip the process of identifying patterns in the
raw data. Such works focus on automatically generating
visualizations according to specific visualization design
knowledge and guidelines [60], [61], [62]. The main idea
is that generated visualizations should contain interesting
patterns, or it is easy for analysts to identify patterns in
generated visualizations. These works, however, mainly
focus on how to generate visualization charts, rather than
how to identify patterns from generated charts.

While there has been a variety of methods for automatic
pattern identification, none has addressed the problem of
pattern identification in chart images instead of in the raw
data. In this paper, we propose to solve this problem by
using deep factor models, which not only supports pattern
identification but also facilitates pattern interpretation.

6.2 VAE based deep factor model

Factor models learn vector representations of the input data.
The independent variables in the learned representation
captures independent factors that generate the input data,
making factor models an important tool for pattern identifi-
cation.
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Fig. 8. Comparison Results of mean AUC of the semi-supervised annotation method with an increasing fraction of labeled data (x axis). (a) Results
on the PG-S dataset. (b) Results on the TR dataset. (c) Results on the SP dataset.

TABLE 4
Comparison results of AUC and mAUC in % on the PG-S dataset.

Column Pi indicates the category of pattern i. The best results are marked in bold.

Model P1 P2 P3 P4 P5 P6 P7 P8 mAUC
VAE 64.29 60.13 71.71 51.96 52.80 51.78 63.37 49.88 58.24
NPID 49.93 48.85 54.14 49.02 58.61 49.30 42.99 49.85 50.34
LadderVAE 60.80 59.25 70.13 49.92 49.84 50.43 62.08 49.63 56.52
OT-VAE 65.62 59.15 76.51 52.03 49.92 53.58 64.86 50.51 59.02

TABLE 5
Comparison results of accuracy in

% on the TR dataset.

Model Accuracy
VAE 41.33
NPID 33.18
LadderVAE 40.00
OT-VAE 53.33

In order to learn explainable and disentangled factors,
a series of VAE based deep factor model have been pro-
posed. For example, β-VAE [25], [26] learns a conditionally
independent factors of variation in the data by gradually
increasing the weight of the second item in the loss function.
Info-VAE [27], [28], [29] decomposes the loss function into
two parts: a mutual information part and a prior diver-
gence part. Therefore, it can strengthen the disentanglement
among factors by increasing the weight of the second part.
However, all these works focus on the ELBO loss function.
Instead, we propose an OT-VAE model which is drastically
different: It learns the independent factor representation by
minimizing the margin between log p(X) and the ELBO
loss.

6.3 Visual Explanation for Deep Inference
While the usage of deep neural networks enables supe-
rior performance, their inference processes are still black
boxes [30]. In order to make the deep inference process
interpretable, visualization-based techniques have been pro-
posed to provide “visual explanations” for the inference
results from a large class of Convolutional Neural Net-
work (CNN)-based deep models. Recent works can be
grouped into two categories: transpose convolution meth-
ods and gradient-based methods. Transpose convolution
methods [31], [32] visualize the output of a specific layer
by mapping it to the input space with the transpose convo-
lution operation and the visualization results are often used
to explain the output semantics of the intermediate layers in
the deep model. The gradient-based [33], [34] methods pro-
duce multi-grained visualization results that corresponds to
the different layers of the deep model by calculating the
derivations of the inference bias to the related features. In
our work, we extend the gradient-based methods to VAE

and propose Grad-FAM to produce visual explanations for
the inferred factors.

6.4 Chart Image Recognition

Existing chart image recognition mainly focuses on two
tasks: chart type classification and visual contents decod-
ing [11]. Pattern identification shares a common framework
with these two tasks that starts from feature extraction and
ends at pattern extraction. For the feature extraction part,
prior models use hand-crafted features [12] but does not
scale well with large amount of unbalanced data. Amara
et. al. [13] leverage convolutional neural network (CNN)
on image sets and achieve better classification results. Dif-
ferent from these methods, our method supports unsu-
pervised feature extraction and arithmetic feature opera-
tions to generate higher-quality features. For the pattern
extraction part, existing works mainly rely on supervised
classification or unsupervised clustering which output label
numbers instead of semantic patterns. In contrast, we adopt
visualization-based approaches to interactively and directly
define and extract patterns based on the learned representa-
tions.

7 DISCUSSION AND CONCLUSIONS

In this paper, we propose ChartNavigator, an interactive
pattern identification and annotation framework for visual-
ization charts. We develop an optimal transport variational
autoencoder combined with interactive visualization-based
approaches for representation learning. Experiments using
real-world datasets indicate the improvement of our method
compared to baselines.
Target User and Factor Setting: ChartNavigator is designed
for data analysts who need to efficiently find patterns from a
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large amount of chart images, for example, visualization an-
alysts, journalists, business competitors and domain experts
from different application areas. To provide meaningful fac-
tors, we suggest a trade-off between the number of factors
and the performance of the OT-VAE model. On one hand,
the number of factors should be as small as possible, so that
duplicate semantics can be avoided. On the other hand, the
ELBO of the OT-VAE model should be as good as possible,
so that the trained model can better approximate the data
distribution and generate meaningful factors.
Future Work: In this paper, we evaluate the effectiveness
of ChartNavigator in three types of visualization charts,
including scatterplot, pixel map and heatmap. We plan
to incorporate more types of visualization charts, such as
graph, treemap and streamgraph etc. Additionally, future
iterations of ChartNavigator will adopt automated methods
to draw semantics from the factor activation maps to further
enhance the interpretability.
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